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Abstract

Most previous solutions for groundwater flow induced by localized recharge assumed
either aquifer incompressibility or two-dimensional flow in the absence of the vertical
flow. This paper develops a new three-dimensional flow model for hydraulic head varia-
tion due to localized recharge in a rectangular unconfined aquifer with four boundaries5

under the Robin condition. A governing equation for describing the head distribution
is employed. The first-order free surface equation with a source term defining a con-
stant recharge rate over a rectangular area is used to depict water table movement.
The solution of the model for the head distribution is developed by the methods of
the Laplace transform and double integral transform. Based on the convolution tech-10

nique, the present solution is applicable to flow problems accounting for arbitrary time-
depending recharge rates. The solution of depth-average head can then be obtained
by integrating the head solution to depth and dividing the result by the aquifer thick-
ness. The use of rectangular aquifer domain has two merits. One is that the integration
for estimating the depth-average head can be analytically achieved. The other is that15

existing solutions based on aquifers of infinite extent can be considered as special
cases of the present solution before the time having the aquifer boundary effect on the
head distribution. With the help of the present solution, the assumption of neglecting
the vertical flow effect on the transient head at an observation well outside a recharge
region can be assessed by a dimensionless parameter related to the aquifer horizontal20

and vertical hydraulic conductivities, initial aquifer thickness, and a shortest distance
between the observation well and the edge of the recharge region. The validity of as-
suming aquifer incompressibility is dominated by the ratio of the aquifer specific yield
to its storage coefficient. In addition, the sensitivity analysis is performed to investigate
the head response to the change in each of the aquifer parameters.25
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1 Introduction

Water table rises due to localized recharge such as rainfall, lakes, and agricultural irri-
gation into the regional area of the aquifer. Excess recharge may cause soil liquefaction
or wet basements of buildings. Groundwater flow behavior induced by recharge into
aquifers is therefore crucial in water resource management. The Boussinesq equation5

has been extendedly used to describe horizontal flow without the vertical component
in unconfined aquifers (e.g., Ireson and Butler, 2013; van der Spek et al., 2013; Yeh
and Chang, 2013; Chor and Dias, 2015; Hsieh et al., 2015; Liang and Zhang, 2015;
Liang et al., 2015). The equation can be linearized on the basis of the assumption that
time-varying saturated aquifer thickness is constant. The assumption is valid when the10

recharge rate is smaller than the hydraulic conductivity and/or the rise in the water ta-
ble is smaller than the initial aquifer thickness. Marino (1967) presented quantitative
criteria to validate the assumption, and the criteria are shown in the next section. On
the basis of the assumption, analytical solutions of the linearized Boussinesq equation
for various aquifer configurations were developed.15

The rate of localized recharge can be a constant for a long term but should be de-
pendent of time for a short term (Rai et al., 2006). An exponentially decaying function
of time is usually used for recharge intensity decreasing from a certain rate to an ul-
timate one. An arbitrary time-depending recharge rate is commonly approximated as
the combination of several linear segments of time to develop analytical solutions for20

water table rise subject to the recharge.
Analytical models accounting for water table rise in an aquifer near recharge region

regarded as an infinite-length strip are reviewed. One-dimensional (1-D) flow perpen-
dicular to the strip is considered while the flow along the strip is assumed ignorable.
These models deal with aquifers of finite or infinite extent with various types of outer25

boundary conditions. Hantush (1963) considered an aquifer of infinite extent without
a lateral boundary. Rao and Sarma (1980) considered an aquifer of finite extent with
two constant-head (also called Dirichlet) boundaries. Later, they developed a solution
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(Rao and Sarma, 1984) for a finite-extent aquifer between no-flow and constant-head
boundaries. Latinopoulos (1986) deliberated on a finite-extent aquifer between two
boundaries of a Robin boundary and the other one under either the Dirichlet or no-flow
condition. The recharge is treated as a periodical pulse consisting of constant rates
for rainy seasons and zero for dry seasons. Bansal and Das (2010) studied an aquifer5

extending semi-infinitely from a Dirichlet boundary and overlying a sloping impervious
base and indicated that the change in groundwater mound induced by strip-shaped
recharge increases with the base slope.

A variety of analytical models were presented to describe water table rise for two-
dimensional (2-D) flow induced by rectangle-shaped recharge into unconfined aquifers.10

The differences between these solutions are addressed below. Hantush (1967) consid-
ered an infinite-extent aquifer with localized recharge having a constant rate. Mang-
lik et al. (1997) handled an arbitrary time-varying rate of recharge into a rectangular
aquifer bounded by no-flow stratum. Manglik and Rai (1998) investigated groundwater
flow due to recharge with irregularly time-varying rates for a rectangular aquifer where15

the lateral boundary is under the Dirichlet condition. Chang and Yeh (2007) considered
one localized recharge and multiple extraction wells in an anisotropic aquifer overly-
ing an impervious sloping bed. They indicated that the aquifer anisotropy and bottom
slope notably influence water table distributions. Bansal and Teloglou (2013) explored
the problem of a groundwater mound subject to multiple localized recharges and with-20

drawal wells in an unconfined aquifer overlying a semi-permeable base. They indicated
that groundwater mound rises as the decrease in the aquifer hydraulic conductivity.

Some articles discussed water table rise near circle-shaped recharge region and
thus considered radial groundwater flow which is symmetric to the center of the
recharge region. Rai et al. (1998) presented an analytical model describing water table25

growth subject to an exponentially decaying rate of recharge in a circle-shaped uncon-
fined aquifer with an outer Dirichlet boundary. Illas et al. (2008) considered the same
model, but the aquifer has leakage. They indicated that leakage across the aquifer
bottom significantly influences spatiotemporal water table distributions despite a small
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amount of the leakage. On the other hand, some researches considered radial and
vertical flows adjacent to a circle-shaped recharge region in an infinite-extent uncon-
fined aquifer. A first-order free surface equation as the top boundary condition of the
aquifer is applied to describe water table rise. Zlotnik and Ledder (1992) developed an-
alytical models for describing the distributions of hydraulic head and flow velocity due5

to constant-rate recharge. They found that models neglecting aquifer compressibility
overestimate the head and flow velocity in the aquifer domain. Ostendorf et al. (2007)
derived an analytical model for head distribution in an aquifer with considering an ex-
ponentially decaying rate of recharge. Predictions of their solution agreed well with
the field data obtained in the Plymouth-Carver Aquifer in southeastern Massachusetts10

given by Hansen and Lapham (1992).
Some studies neglected aquifer compressibility to build a three-dimensional (3-D)

flow model describing spatiotemporal head distributions in an unconfined aquifer with
a rectangular region. Dagan (1967) derived an approximate solution of the model to
make predictions for a small ratio of the recharge rate over the hydraulic conductivity.15

Zlotnik and Ledder (1993) presented an analytical model and found that groundwater
flow are horizontal in the area beyond 150 % of the length or width of the recharge
region.

It would be informative to summarize the above-mentioned models in Table 1. The
solutions of the models are classified according to flow dimensions into 1-D, 2-D, and20

radial flows and further categorized according to aquifer domain, aquifer boundary con-
ditions, recharge region, and recharge rate. The table shows that those solutions as-
sume either no vertical flow or aquifer incompressibility. In addition, the Dirichlet and no-
flow conditions considered by some of those solutions are not applicable to a boundary
having a semi-permeable stratum, but the Robin condition is. The former two conditions25

are indeed special cases of the third one.
The objective of this paper is to develop a new mathematical model for depicting

the spatiotemporal hydraulic head distributions subject to localized recharge with an
arbitrary time-varying recharge rate in a rectangular-shaped unconfined aquifer. The
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four boundaries are considered under the Robin condition which can reduce to the
Dirichlet or no-flow condition. A governing equation describing 3-D transient flow sub-
ject to the effect of aquifer compressibility is used. A first-order free surface equation
with a source term representing recharge rate is chosen to describe the top bound-
ary condition. The transient head solution of the model is derived by the methods of5

Laplace transform, double-integral transform, and convolution theory. The sensitivity
analysis based on the present solution is performed to study the head response to the
change in each of hydraulic parameters. On the basis of solution’s predictions, the ef-
fect of the Robin boundaries on time-depending head distributions at observation wells
is investigated. A quantitative criterion under which the Robin condition reduces to the10

Dirichlet and no-flow ones is provided. In addition, quantitative criteria for the validity
of two assumptions of aquifer incompressibility and no vertical flow are provided and
errors arising from the assumptions in the hydraulic head are also discussed. Temporal
head distributions accounting for transient recharge rates are demonstrated as well.

2 Methodology15

2.1 Mathematical model

A mathematical model is developed for describing spatiotemporal hydraulic head distri-
butions induced by localized recharge in a rectangular unconfined aquifer as illustrated
in Fig. 1a. The four boundaries of the aquifer are considered under the Robin condition.
The aquifer has the widths of l and w in x and y directions, respectively. The recharge20

uniformly distributes over a rectangular region having widths a and b in x and y direc-
tions, respectively. One of the location of the region corners is designated at (x1,y1).
The shortest distance between the edge of the region and an observation well is d .
The shortest distances measured from the edge of the region to boundaries 1, 2, 3
and 4 are denoted as d1, d2, d3, and d4, respectively. The initial aquifer thickness is B25

as shown in Fig. 1b.

12252

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/12247/2015/hessd-12-12247-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/12247/2015/hessd-12-12247-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 12247–12280, 2015

Technical Note:
three-dimensional

transient
groundwater flow

C.-H. Chang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The governing equation describing 3-D transient head distribution in a homogeneous
and anisotropic aquifer is expressed as

Kx
∂2h
∂x2

+Ky
∂2h
∂y2

+Kz
∂2h
∂z2

= Ss
∂h
∂t

(1)

where t is time, h(x, y , z, t) represents the hydraulic head, Kx, Ky , and Kz are the
hydraulic conductivities in x, y , and z directions, respectively, and Ss is the specific5

storage. The initial static water table is chosen as the reference datum where the ele-
vation head is set to zero. The initial condition is therefore written as

h = 0 at t = 0 (2)

The Robin conditions specified at the four sides of the aquifer are defined as

∂h
∂x
−

K1

Kxb1
h = 0 at x = 0 (3)10

∂h
∂x

+
K2

Kxb2
h = 0 at x = l (4)

∂h
∂y
−

K3

Kyb3
h = 0 at y = 0 (5)

∂h
∂y

+
K4

Kyb4
h = 0 at y = w (6)

where the subscripts 1, 2, 3, and 4 represent the boundaries at x = 0, x = l , y = 0,
and y = w, respectively, and K and b are the hydraulic conductivity and width of the15

medium between the aquifer and boundary, respectively. Note that each of Eqs. (3)–(6)
reduces to the Dirichlet condition when b (i.e., b1, b2, b3 or b4) is set to zero and the
no-flow condition when K (i.e., K1, K2, K3 or K4) is set to zero. The aquifer lies on an
impermeable base denoted as

∂h/∂z = 0 at z = −B. (7)20
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The first-order free surface equation describing the response of water table to recharge
over the rectangular region can be written as (Zlotnik and Ledder, 1993)

Kz
∂h
∂z

+Sy
∂h
∂t

= Iuxuy at z = 0 (8)

ux = u (x−x1)−u (x−x1 −a) (8a)5

uy = u (y − y1)−u (y − y1 −b) (8b)

where Sy is the specific yield, I is a recharge rate, and u is the unit step function.
Equation (8) involves the simplification from non-uniform saturated aquifer thickness
below z = h to uniform one below z = 0. Marino (1967) indicated that the simplification
is valid when the water table rise is smaller than 50 % of the initial water table height10

and the recharge rate is smaller than 20 % of the hydraulic conductivity.
Dimensionless variables and parameters are defined as follows

h =
h
B

,x =
x
d

,y =
y
d

,z =
z
B

, l =
l
d

,w =
w
d

,x1 =
x1

d
,y1 =

y1

d
,a =

a
d

,b =
b
d

,κz =
Kzd

2

KxB2
,

t =
Kxt

Ssd2
,κy =

Ky
Kx

,κ1 =
K1d
Kxb1

,κ2 =
K2d
Kxb2

,κ3 =
K3d

Kyb3
,κ4 =

K4d
Kyb4

,ξ =
I
Kz

,ε =
Sy

SsB
(9)

where the overbar denotes a dimensionless symbol. According to Eq. (9), the math-
ematical model, Eqs. (1)–(8b), can then be expressed as15

∂2h

∂x
2
+ κy

∂2h

∂y
2
+ κz

∂2h

∂z
2
=
∂h

∂t
(10)

h = 0 at t = 0 (11)

∂h

∂x
− κ1h = 0 at x = 0 (12)
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∂h

∂x
+ κ2h = 0 at x = l (13)

∂h

∂y
− κ3h = 0 at y = 0 (14)

∂h

∂y
+ κ4h = 0 at y = w (15)

∂h/∂z = 0 at z = −1 (16)

∂h

∂z
+
ε
κz

∂h

∂t
= ξuxuy at z = 0 (17)5

ux = u
(
x−x1

)
−u
(
x−x1 −a

)
(17a)

uy = u
(
y − y1

)
−u
(
y − y1 −b

)
. (17b)

2.2 Analytical solution

The solution of the model is derived by applying the Laplace transform and the double-10

integral transform to Eqs. (10)–(17b) and then inverting the transformed results with the
complex integral and the inverse formulas of double-integral transform. The solution is
expressed as

h(x,y ,z,t) =
∞∑
m=1

∞∑
n=1

Φ
(
αm,βn,z,t

)
Fx
(
αm,x

)
Fy
(
βn,y

)
(18)

with15

Φ=φs +φ0 +
∞∑
j=1

φj (18a)
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φs =
Recosh

[(
1+ z

)
λs
]

κzλssinh(λs)
(18b)

φ0 = −2λ0Recosh
[(

1+ z
)
λ0
]
exp
(
−γ0t

)
/η0 (18c)

φj = −2λjRecos
[(

1+ z
)
λj
]
exp
(
−γj t

)
/ηj (18d)

η0 = γ0[(1+2εκz)λ0 cosh(λ0)+ (1−εγ0)sinh(λ0)] (18e)

ηj = γj [(1+2εκz)λj cos
(
λj
)
+
(
1−εγj

)
sin(λj )] (18f)5

λs =
√
f /κz,γ0 = f − κzλ2

0,γj = f + κzλ
2
j (18g)

Re = ξUx(αm)Uy (βn) (18h)

Ux (αm) =

√
2Vx(αm)√

κ1 +
(
α2
m + κ2

1

)[
l + κ2/

(
α2
m + κ2

2

)] (18i)

Uy (βn) =

√
2Vy (βn)√

κ3 +
(
β2
n + κ

2
3

)[
w + κ4/

(
β2
n + κ

2
4

)] (18j)

Vx (αm) =
{
κ1
[
cos
(
αmx1

)
− cos(αmχ )

]
−αm

[
sin
(
αmx1

)
− sin(αmχ )

]}
/αm (18k)10

Vy (βn) =
{
κ3
[
cos
(
βny1

)
− cos(βnψ)

]
−βn

[
sin
(
βny1

)
− sin(βnψ)

]}
/βn (18l)

Fx
(
αm,x

)
=

√
2
[
αm cos

(
αmx

)
+ κ1 sin

(
αmx

)]√
κ1 +

(
α2
m + κ2

1

)[
l + κ2/

(
α2
m + κ2

2

)] (18m)

Fy
(
βn,y

)
=

√
2
[
βn cos

(
βny
)
+ κ3 sin

(
βny
)]√

κ3 +
(
β2
n + κ

2
3

)[
w + κ4/

(
β2
n + κ

2
4

)] (18n)
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f = α2
m + κyβ

2
n, χ = x1 +a,ψ = y1 +b (18o)

where subscripts m, n, and j are integers varying from 1, 2, . . .∞, and eigenvalues
αm, βn, λj , and λ0 are the positive roots of the following equations, respectively, as

tan
(
lαm
)
=
αm(κ1 + κ2)

α2
m − κ1κ2

(19)

tan
(
wβn

)
=
βn(κ3 + κ4)

β2
n − κ3κ4

(20)5

tan(λj ) = −ε
(
f + κzλ

2
j

)
/λj (21)

−εκzλ
2
0 + λ0 +εf

εκzλ
2
0 + λ0 −εf

= exp(2λ0) (22)

The detailed development of Eq. (18) is demonstrated in Appendix. Additionally,
Eqs. (19)–(21) have infinite roots owing to the trigonometric function tan whereas
Eq. (22) has only one positive root. The schemes to search for the roots αm, βn, λj , and10

λ0 are introduced in the following section. The first and second terms on the right-hand
side (RHS) of Eq. (18) are double series expanded by αm and βn. The RHS third term
in Eq. (18) is triple series expanded by αm, βn, and λj .

The use of finite aquifer domain has two merits. One is that the solution of depth-
average head, defined as

∫0
−1h(x,y ,z,t)dz, can be analytically integrated. The in-15

tegration variable z appears only in the functions of cosh
[
(1+ z)λs

]
in Eq. (18b),

cosh
[
(1+ z)λ0

]
in Eq. (18c) and cos

[
(1+ z)λj

]
in Eq. (18d). The solution of depth-

average head therefore equals Eq. (18) where these three functions are replaced by
sinh(λs)/λs, sinh(λ0)/λ0, and sin(λj )/λj , respectively. The other is that the present
solution is applicable to head predictions in aquifers of infinite extent before the dimen-20

sionless time to have lateral aquifer boundary effect on the head distribution. Wang and
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Yeh (2008) mentioned a time criterion defined as tcr = 0.03(1+ε)R
2

where R = R/d
denotes a shortest dimensionless distance from the lateral boundary to the edge of the
recharge region. This criterion is, in effect, a boundary-effect time representing a time
that the head distribution starts to have the effect of the aquifer boundary. Existing solu-
tions based on aquifers of infinite extent can therefore be considered as special cases5

of the present solution if the dimensionless recharge time is less than the boundary-
effect time.

2.3 Calculation of eigenvalues

The eigenvalues αm, βn, λj , and λ0 can be determined by Newton’s method with initial
guess values (IGVs) set to be the vertical asymptotes of the functions on the left-hand10

side (LHS) of Eqs. (19)–(22), respectively. Hence, IGVs for αm are α′+δ if α′ < (κ1κ2)1/2

and α′ −δ if α′ > (κ1κ2)1/2 where α′ = (2m−1)π/(2l ) and δ is a small value of 10−8

to avoid being right at the vertical asymptotes. Similarly, IGVs for βn are β′ +δ if β′ <
(κ3κ4)1/2 and β′ −δ if β′ > (κ3κ4)1/2 where β′ = (2n−1)π/(2w). In addition, IGVs for

λj are (2j −1)π/2+δ, and IGV for λ0 is δ+
[(

1+4κzf ε
2
)1/2
−1
]
/(2εκz) obtained by15

setting the denominator of the LHS function of Eq. (22) to be zero.

2.4 Solution for time-varying recharge rate

The present solution, Eq. (18), is applicable to arbitrary time-depending recharge rates
on the basis of the convolution technique expressed as

hIt = hI0 +

t∫
0

∂ξt(τ)
∂τ

h
(
t− τ

)
/ξdτ (23)20

12258

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/12247/2015/hessd-12-12247-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/12247/2015/hessd-12-12247-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 12247–12280, 2015

Technical Note:
three-dimensional

transient
groundwater flow

C.-H. Chang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where hIt signifies a dimensionless head solution for a time-depending recharge rate,
ξt (τ) represents a dimensionless transient recharge rate,τ is a dummy variable, hI0 is

Eq. (18) in which ξ in Eq. (18h) is replaced by ξt (0), and h(t− τ) is also Eq. (18) with t
replaced by t− τ. If Eq. (23) is not integrable, it can be discretized as (Singh, 2005)

hN =
N∑
i=1

∆ξi

∆t
η(N − i +1) (24)5

with

∆ξi = ξi − ξi−1 (24a)

η (M) =

t∫
0

h(M∆t− τ)dτ (24b)

where hN represents a numerical result of dimensionless head h at t = ∆t×N, ∆t is
a dimensionless time step, ξi and ξi−1 are dimensionless recharge rates at t = ∆t× i10

and t = ∆t× (i −1), respectively, and η (M), called ramp kernel, depends on Eq. (18)
in which t is replaced by M∆t− τ. The integration result of Eq. (24b) can be denoted
as Eq. (18) where φs is replaced by φst and two exponential terms in Eqs. (18c)

and (18d) are replaced, respectively, by exp
(
−Mγ0∆t

)[
−1+exp

(
γ0∆t

)]
/γ0 and

exp
(
−Mγj∆t

)[
−1+exp

(
γj∆t

)]
/γj .15

2.5 Sensitivity analysis

The sensitivity analysis is administered to assess the change in the hydraulic head in
response to the change in each of the hydraulic parameters. A coefficient to denote the
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sensitivity of the hydraulic head to a specific parameter can be expressed as

Sc,t =
∂h/B

∂Pc/Pc
= Pc

∂h
∂Pc

(25)

where Pc is the cth parameter in the present solution, Sc,t is the normalized sensitivity

coefficient at a time to the c− th parameter, and h is the present solution, Eq. (18). The
derivative in Eq. (25) can be approximated as5

Sc, t =
h (Pc +∆Pc)−h(Pc)

∆Pc/Pc
(26)

where ∆Pc is an increment chosen as 10−3∆Pc (Yeh et al., 2008).

3 Results and discussion

Previous articles have discussed groundwater mounds in response to localized
recharge into aquifers with various hydraulic parameters (e.g., Dagan, 1967; Rao and10

Sarma, 1980; Latinopoulos, 1986; Manglik et al., 1997; Manglik and Rai, 1998; Rai
et al., 1998; Chang and Yeh, 2007; Illas et al., 2008; Bansal and Das, 2010; Bansal and
Teloglou, 2013). Flow velocity fields below groundwater mounds have also been ana-
lyzed (Zlotnik and Ledder, 1992, 1993). This section therefore focuses on the transient
behavior of hydraulic head at an observation well with the aid of the present solution.15

The default values of the parameters and variables for calculation are noted in Table 2.
In Sect. 3.1, transient head distributions in aquifers subject to Dirichlet, no-flow and
Robin boundary conditions are compared. In Sect. 3.2, the effect of the vertical flow on
the head distribution is investigated. In Sect. 3.3, errors arising from assuming aquifer
incompressibility (i.e., Ss = 0) to develop analytical solutions is discussed. In Sect. 3.4,20

the response of the hydraulic head to transient recharge rates based on Eq. (23) is
demonstrated. In Sect. 3.5, the sensitivity analysis defined by Eq. (26) is performed.
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3.1 Effect of lateral boundary

The Robin condition can become the Dirichlet or no-flow one, depending on the mag-
nitudes of κ1d1 for Eq. (12), κ2d2 for Eq. (13), κ3d3 for Eq. (14), and κ4d4 for Eq. (15).

We consider a symmetrical aquifer system with l = w = 22, d1 = d2 = d3 = d4 = 10 and

κ1 = κ2 = κ3 = κ4 as illustrated in Fig. 2. The magnitudes of κ1d1, κ2d2, κ3d3 and κ4d45

are the same and defined as κ. The curves of h vs. t plotted by the present solution,
Eq. (18), for κ = 10−3, 10−2, 10−1, 1, 10, 100, and 200 are shown in Fig. 2. The curves
h vs. t are plotted from Manglik et al. (1997) solution with the no-flow condition (i.e.,
κ = 0), Manglik and Rai (1998) solution with the Dirichlet condition (i.e., κ→∞), and
the present solution with the Robin condition. Before t = 104, these curves give the10

same magnitude of h at a fixed dimensionless time t since the lateral aquifer boundary
has been beyond where groundwater is affected by localized recharge. After t = 104,
the curves for the cases of κ = 10−2, 10−1, 1, 10, and 100 deviate from each other
gradually as time increases. A larger magnitude of κ between κ = 10−2 and κ = 100
causes a smaller h at a fixed t. On the other hand, the present solution for the cases of15

κ = 10−3 and 10−2 agrees well with Manglik et al. (1997) solution based on κ = 0 and
for the cases of κ = 100 and 200 predicts the same result as Manglik and Rai (1998)
solution based on κ→∞. We may reasonably conclude that the Robin condition re-
duces to the no-flow one when κ ≤ 10−2 and the Dirichlet one when κ ≥ 100.

3.2 Effect of vertical flow20

Dimensionless parameter κz (i.e., Kzd
2/
(
KxB

2
)

) dominates the effect of the vertical

flow on transient head distributions at an observation well. Consider κ1d1 = κ2d2 =
κ3d3 = κ4d4 = 100 for lateral aquifer boundaries under the Dirichlet condition as dis-

cussed in Sect. 3.1. The temporal distributions of h predicted by the present solution,
Eq. (18), with κz = 0.01, 0.1, 1, and 10 are demonstrated in Fig. 3. The temporal dis-25
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tribution of h predicted by Manglik and Rai (1998) solution based on 2-D flow without
the vertical component is taken in order to address the effect of vertical flow. The figure
reveals that h increases with κz when κz ≤ 1. The difference in h predicted by both so-
lutions indicates the vertical flow effect. The Manglik and Rai (1998) solution obviously
overestimates the head. The vertical flow prevails, and its effect should be taken into5

account when κz < 1, indicating a thick aquifer, a small ratio of Kz/Kx, and/or an ob-
servation well near a recharge region. On the other hand, the present solution for the
cases of κz = 1 and 10 agrees well with Manglik and Rai (1998) solution, indicating that
the vertical flow effect is ignorable when κz ≥ 1. We can recognize from the agreement
that existing solutions neglecting the vertical flow effect give good predictions when10

κz ≥ 1.

3.3 Effect of specific storage

Some of existing models use the Laplace equation as a governing equation with as-
suming Ss = 0 (e.g., Singh, 1976; Schmitz and Edenhofer, 1988; Zlotnik and Ledder,
1993). The assumption is valid when ε (i.e., Sy/(SsB)) is larger than a certain value.15

This section quantifies the value. The Zlotnik and Ledder (1993) model based on 3-D
Laplace equation, Eq. (1) with Ss = 0, is taken for comparison with the present model
using Eq. (1) with Ss 6= 0. The dimensionless variables of s, x, y , z, t, X , and Y in

their model are replaced by h/ξ, (κz)
1/2x, (κz)

1/2y , z, κzt/ε, (κz)
1/2a, and (κz)

1/2b,
respectively, for ease of comparisons. Consider the cases of κz = 10−2 for an observa-20

tion well located at a 3-D flow area and κz = 10 for the well located at a 2-D flow area
as discussed in Sect. 3.2. The assumption can be assessed through the comparison
in the dimensionless heads predicted by both solutions for ε = 1, 10, 102, and 103 as
shown in Fig. 4a for κz = 10−2 and Fig. 4b for κz = 10. The present solution predicts
a steady-state h of 0.054 in Fig. 4a and 0.074 in Fig. 4b after certain times due to lateral25

Dirichlet boundaries (i.e., κ1d1 = κ2d2 = κ3d3 = κ4d4 = 100) as discussed in Sect. 3.1.

In contrast, their solution predicts h which increases with t due to the absence of lat-
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eral boundaries. When ε = 1 and 10, both solutions give different values of h for both
cases of κz = 10−2 and κz = 10 before t = 100, indicating that the assumption of Ss = 0
causes inaccurate h. When ε = 102 and 103, both solutions predict very close results
of h for both cases before the time of approaching steady-state h. These results lead
to the conclusion that the assumption of Ss = 0 is valid when ε ≥ 100 for 3-D and 2-D5

flow cases.

3.4 Transient recharge rate

Most articles (e.g., Rai et al., 1998; Chang and Yeh, 2007; Illas et al., 2008; Bansal and
Teloglou, 2013) define a transient recharge rate as It (t) = I1 + I0 exp(−rt) (i.e., ξt(t) =
ξ1 + ξ0 exp(−γt) for a dimensionless rate) where ξt = It/Kz, ξ1 = I1/Kz, ξ0 = I0/Kz, γ =10

rSsd
2/Kx, and r is a decay constant. The rate decays exponentially from an initial value

of I1 + I0 to an ultimate one of I1. The present solution, Eq. (18), can be applied for the
response of the head to the transient rate based on Eq. (23). Substituting ∂ξt (τ)/∂τ =
−γξ0 exp(−γτ) into Eq. (23) and integrating the result for τ from τ = 0 to τ = t yields
the present solution of the dimensionless head accounting for the transient rate, giving15

hI0 plus Eq. (18) where Re in Eqs. (18b), Reexp(−γ0t) in Eq. (18c), and Reexp(−γj t) in

Eq. (18d) are replaced by R0[exp(−γt)−1], γR0

[
exp(−γt)−exp

(
γ0t
)]
/(γ0 +γ), and

γR0

[
exp(−γt)−exp

(
γj t
)]
/(γj +γ) with R0 = ξ0Ux(αm)Uy (βn), respectively. Similarly,

Zlotnik and Ledder (1993) solution can also be used to obtain the head subject to
the transient rate by substituting it into Eq. (23) and then integrating the result using20

numerical approaches. Now, we consider Ramana et al. (1995) solution depicting 2-
D flow induced by the transient rate in rectangular aquifers with the lateral boundary
under the Dirichlet condition. Figure 5 shows the temporal distributions of h for the
transient rate predicted by these three solutions when κz = 1, κ = 100 and ε = 100.
The present solution agrees well with Ramana et al. (1995) solution. We can recognize25
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from the agreement that, even for transient rates, the Robin condition reduces to the
Dirichlet one when κ ≥ 100 (i.e., κ1d1 = κ2d2 = κ3d3 = κ4d4 = 100) as discussed in
Sect. 3.1 and the vertical flow effect is ignorable when κz ≥ 1 as discussed in Sect. 3.2.
Moreover, agreement on h estimated by the present solution and Zlotnik and Ledder
(1993) solution before t = 3×103 will make clear that, even for transient rates, assuming5

aquifer incompressibility (i.e., Ss = 0) is valid when ε ≥ 100 as discussed in Sect. 3.3.

3.5 Sensitivity analysis

Consider point A of (555, 500, −10 m) at a 3-D flow region (i.e., κz < 1) and point
B of (800, 500, −10 m) at a 2-D flow region (i.e., κz ≥ 1) as discussed in Sect. 3.2.
Localized recharge distributes over the squire area of 450 m ≤ x ≤ 550 m and 450 m10

≤ y ≤ 550 m. The distance d herein is set to 5 m for point A and 250 m for point B.
The aquifer system is of isotropy with Kx = Ky and symmetry with K1 = K2 = K3 = K4
for conciseness. The sensitivity analysis is performed by Eq. (26) to investigate the
responses of the hydraulic heads at these two points to the change in each of a, b, Ss,
Sy, Kx (or Ky ), Kz, and K1 (or K2, K3 and K4). The curves of the normalized sensitivity15

coefficient Sc, t vs. t for these seven parameters are shown in Fig. 6a for point A and
Fig. 6b for point B. The figure shows that the hydraulic heads at both points are more
sensitive to the changes in a, b, Kx, and Sy than those in the others. This may indicate
that a flow model should include at least these four parameters. The figure also shows
that the heads at points A and B are insensitive to the change in K1 because of κ1d1 =20

4500 > 100 as discussed in Sect. 3.1. In addition, Sc, t to Kz for point A is nonzero after

t = 0.4 day due to κz = 6.25×10−3 < 1 as discussed in Sect. 3.2. In contrast, Sc, t to
Kz for point B is very close to zero over the entire period because of κz = 15.625 > 1.
Moreover, the heads at points A and B are insensitive to the change in Ss due to
ε = 500 > 100 as discussed in Sect. 3.3.25
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4 Concluding remarks

A mathematical model is developed to depict spatiotemporal head distributions induced
by localized recharge with an arbitrary time-varying rate in a rectangular unconfined
aquifer bounded by Robin boundaries with different hydraulic parameters. A governing
equation for 3-D flow is considered. A first-order free surface equation with a source5

term representing the recharge is employed for describing the change in water ta-
ble. The analytical head solution of the model is obtained by applying the Laplace
transform, the double-integral transform, and the convolution technique. The use of
rectangular aquifer domain leads to two merits. One is that the integration for the so-
lution of the depth-average head can be analytically done. The other is that existing10

solutions based on aquifers of infinite extent are special cases of the present solution
when the recharge time is less than the boundary-effect time. The sensitivity analysis
is performed to explore the response of the head to the change in each of hydraulic pa-
rameters. With the aid of the present solution, the following conclusions can be drawn:

1. In respect of affecting h at observation wells, the Robin condition specified at15

x = 0 reduces to the Dirichlet one when κ1d1 ≥ 100 (i.e., K1d1/(Kxb1) ≥ 100) and
no-flow one when κ1d1 ≤ 10−2. The quantitative criteria for κ1d1 are applicable to
κ2d2, κ3d3, and κ4d4 for the Robin conditions specified at x = l , y = 0, and y = w,
respectively.

2. The vertical flow causes significant decrease in the hydraulic head at an observa-20

tion well when κz < 1 (i.e., Kzd
2/
(
KxB

2
)
< 1). When κz ≥ 1, the effect of vertical

flow on the head is ignorable, and conventional models considering 2-D flow with-
out the vertical component can therefore predict accurate results.

3. The 3-D Laplace equation based on the assumption of Ss = 0 can be regarded
as a flow governing equation when ε ≥ 100 (i.e., Sy/(SsB) ≥ 100) for the whole25
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aquifer domain. Otherwise, the hydraulic head based on the Laplace equation is
overestimated.

4. The abovementioned conclusions are also applicable to problems of groundwater
flow subject to recharge with arbitrary time-varying rates.

Appendix: Derivation of Eq. (18)5

The applications of the Laplace transform to h and ∂h/∂t lead, respectively, to

h̃ =

∞∫
0

hexp(−pt)dt (A1)

and

∞∫
0

∂h

∂t
exp(−pt)dt = ph̃−h|t=0 (A2)

where h̃ represents the dimensionless head in the Laplace domain, p is the Laplace10

transform parameter, and h|t=0 equals zero due to Eq. (11). The double-integral trans-
form for the Robin conditions, Eqs. (12)–(15), is defined as (Latinopoulos, 1985; Table
I, aquifer type 1)

ĥ =

w∫
0

l∫
0

h̃Fx
(
αm,x

)
Fy
(
βn,y

)
dxdy (A3)

where Fx(αm,x) and Fy (βn,y), the kernel functions of the transform, are defined by15

Eqs. (18m) and (18n), respectively, αm and βn are the roots of Eqs. (19) and (20),
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respectively. The double-integral transform has property

w∫
0

l∫
0

(
∂2h̃

∂x
2
+ κy

∂2h̃

∂y
2

)
Fx
(
αm,x

)
Fy
(
βn,y

)
dxdy = −

(
α2
m + κyβ

2
n

)
ĥ (A4)

where ∂2h̃/∂x
2
+ κy

(
∂2h̃/∂y

2
)

is obtained by applying the Laplace transform to

Eq. (10). Note that Eq. (A4) is based on Eqs. (12)–(15) with constants equaling zero.
The model, Eqs. (10)–(17b), after taking the Laplace transform can be written as5

Eqs. (10) and (12)–(17b) where h and ∂h/∂t are replaced by h̃ and ph̃, respectively,
according to Eqs. (A1) and (A2). The application of the double-integral transform (i.e.,
Eqs. A3 and A4) to the resultant model then yields

κz
∂2ĥ

∂z
2
−
(
p+α2

m + κyβ
2
n

)
ĥ = 0 (A5)

∂ĥ/∂z = 0 at z = −1 (A6)10

∂ĥ

∂z
+
εp
κz
ĥ =

ξ
p
Ux (αm)Uy (βn) at z = 0 (A7)

where Ux (αm) and Uy (βn) are defined in Eqs. (18i) and (18j), respectively. Solving
Eq. (A5) with Eqs. (A6) and (A7) results in the semi-analytical solution of ĥ denoted as

ĥ
(
αm,βn,z,p

)
=
Recosh[(1+ z)λ]

pσ(p)
for −1 ≤ z ≤ 0 (A8)

with15

λ =
√

(p+ f )/κz (A9)

σ (p) = pεκz cosh(λ)+ κzλsinh(λ) (A10)
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where Re and f are defined in Eqs. (18h) and (18o), respectively.
The time-domain solution, Eq. (18), is derived by applying the inverse Laplace and

double-integral transforms to Eq. (A8). The former inversion of Eq. (A8) is first ad-
dressed below. Equation (A8) is a single-value function to p in a complex plane be-
cause satisfying ĥ(p+) = ĥ(p−) where p+ and p− are in terms of the polar coordinates5

defined, respectively, as

p+ = raexp(iθ)− f (A11)

and

p− = raexp[i (θ−2π)]− f (A12)

in which ra represents a radius from the origin at p = −f , i herein is the imaginary unit,10

and θ is an argument between 0 and 2π. Substitutions of Eqs. (A11) and (A12) into Eq.
(A9) lead, respectively, to

λ =
√
ra/κz exp(iθ/2) =

√
ra/κz[cos(θ/2)+ i sin(θ/2)] (A13)

and

λ =
√
ra/κz exp[i (θ−2π)/2] = −

√
ra/κz[cos(θ/2)+ i sin(θ/2)]. (A14)15

Substitution of Eqs. (A11) and (A13) or Eqs. (A12) and (A14) into Eq. (A8) gives rise to
the same result. Equation (A8) is therefore a single-value function without branch cut,
and its inverse Laplace transform equals the sum of residues for poles in the complex
plane.

The residue for a simple pole can be formulated as20

Res = lim
p→ϕ

ĥ (p)× (p−ϕ) (A15)
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where ϕ is the location of the pole in the complex plane, and ĥ (p) is defined in Eq.
(A8). The locations of infinite simple poles can be defined as the roots of the equation

p [pεκz cosh(λ)+ κzλsinh(λ)] = 0 (A16)

which is obtained by letting the denominator of the RHS in Eq. (A8) to be zero. Ob-
viously, one pole is at p = 0 (i.e., ϕ = 0), and its residue equals the RHS in Eq. (18b)5

on the basis of Eq. (A15). Other poles exist at the negative part of the real axis in the
complex plane, and their locations can be defined as the roots of the following equation

pεκz cosh(λ)+ κzλsinh(λ) = 0 (A17)

which is derived from Eq. (A16). One pole is at p = γ0 (i.e., ϕ = γ0) between p = 0 and

p = −f . Substituting p = γ0 and λ = λ0 into Eq. (A9) results in λ0 =
√

(γ0 + f )/κz, which10

indicates the pole located at γ0 = −f +κzλ
2
0. Equation (22) can be derived by the substi-

tution of λ = λ0 and p = −f +κzλ
2
0 (due to p = γ0) into Eq. (A17) and the relationships of

cosh(λ0) = [exp(λ0)+exp(−λ0)]/2 and sinh(λ0) = [exp(λ0)−exp(−λ0)]/2. The residue
for the pole at p = γ0 is defined as φ0 in Eq. (18c) on the basis of Eq. (A15). On the
other hand, infinite poles behind p = −f are at p = γj (i.e.,ϕ = γj ) where j ∈ 1, 2, . . .∞.15

Substituting p = γj and λ = iλj into Eq. (A9) obtains λj i =
√

(γj + f )/κz. This indicates

those poles located at γj = −f − κzλ
2
j . Equation Eq. (21) can be derived by the substi-

tution of λ = iλj and p = −f − κzλ
2
j (due to p = γj ) into Eq. (A17) and the relationships

of cosh(iλj ) = cos(λj ) and sinh(iλj ) = i sin(λj ). The residue for the pole at p = γj can
be expressed as φj in Eq. (18d) in light of Eq. (A15). As a result, the inverse Laplace20

transform to Eq. (A8) is the sum of those residues, defined as Φ=φs +φ0 +
∞∑
j=1
φj .

The inverse double-integral transform to Φ can be conducted by applying the formula
of Eq. (18) (Latinopoulos, 1985; Eq. 14).
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Table 1. Classification of existing analytical solutions involving localized recharge.

References Aquifer domain Aquifer boundary
conditions

Recharge Remarks

Region Rate

1-D groundwater flow
Hantush (1963) Infinite extent None Strip Constant
Rao and Sarma (1980) Finite extent Dirichlet Strip Constant
Rao and Sarma (1984) Finite extent Dirichlet and no-

flow
Strip Constant

Latinopoulos (1986) Finite extent Robin and
Dirichlet/no-flow

Strip Seasonal pulse

Bansal and Das (2010) Semi-infinite extent Dirichlet Strip Constant Sloping aquifer bot-
tom

2-D groundwater flow
Hantush (1967) Infinite extent None Rectangle Constant
Manglik et al. (1997) Rectangle No-flow Rectangle Arbitrary function of time
Manglik and Rai (1998) Rectangle Dirichlet Rectangle Arbitrary function of time
Chang and Yeh (2007) Rectangle Dirichlet Rectangle Exponential decay Sloping aquifer bot-

tom
Bansal and Teloglou (2013) Rectangle Dirichlet at two ad-

jacent sides and
no-flow at the oth-
ers

Rectangle Exponential decay Multiple recharges
and pumping wells

3-D groundwater flow
Dagan (1967) Infinite extent None Rectangle Constant Laplace equation;

approximate solu-
tion

Zlotnik and Ledder (1993) Infinite extent None Rectangle Constant Laplace equation
Radial groundwater flow
Zlotnik and Ledder (1992) Infinite extent with finite thickness None Circle Constant First-order free sur-

face equation
Rai et al. (1998) Circle Dirichlet Circle Exponential decay
Ostendorf et al. (2007) Infinite extent with finite thickness None Circle Exponential decay First-order free sur-

face equation
Illas et al. (2008) Circle Dirichlet Circle Exponential decay Leaky aquifer
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Table 2. Default values of variables and hydraulic parameters used in the text.

Notation Default value (unit) Definition

h None Hydraulic head
(x, y , z) None Variables of Cartesian coordinate
t None Time
(Kx, Ky , Kz) (10, 10, 1 md−1) Aquifer hydraulic conductivities in x, y , and z directions, respectively
(Ss, Sy) (10−5 m−1, 0.1) Specific storage and specific yield, respectively
I 0.1 md−1 Constant recharge rate
It None Transient recharge rate defined as It (t) = I1 + I0 exp(−rt)
(I1 + I0, I1) (0.1, 0.05 md−1) Initial and ultimate transient recharge rates, respectively
r 103d−1 Decay constant of transient recharge rate
(B,l ,w) (20 m, 1, 1 km) Aquifer initial thickness and widths in x and y directions, respectively
d 50 m Shortest distance between the edge of recharge region and an obser-

vation well
(x1, y1) 450 m Location of bottom left corner of recharge region
(a, b) 100 m Widths of recharge region in x and y directions, respectively
(K1, K2, K3, K4) 0.1 md−1 Hydraulic conductivities of media between aquifer and lateral bound-

aries 1, 2, 3 and 4, respectively
(b1, b2, b3, b4) 1 m Widths of media between aquifer and lateral boundaries 1, 2, 3 and 4,

respectively
(d1, d2, d3, d4) 450 m Shortest distances from the edge of the region to lateral boundaries 1,

2, 3 and 4, respectively
R None min(d1,d2,d3,d4)

h None h/B
R None R/d
(x, y , z) (12, 10, −0.5) (x/d , y/d , z/B)

t None Kxt/
(
Ssd

2
)

(κy , κz, ε) (1, 0.625, 500) (Ky/Kx, Kzd
2/
(
KxB

2
)

, Sy/(SsB))

ξ 0.1 I/Kz
ξt None ξ1 + ξ0 exp(−γt)
(ξ1, ξ0, γ) (0.05, 0.05, 2.5) (I1/Kz, I0/Kz, rSsd

2/Kx)

(l , w, a, b) (20, 20, 2, 2) (l/d , w/d , a/d , b/d )(
x1,y1

)
9 (x1/d , y1/d )

(κ1, κ2, κ3, κ4) 0.5 (K1d/(Kxb1), K2d/(Kxb2), K3d/(Kyb3), K4d/(Kyb4))(
d1,d2,d3,d4

)
9 (d1/d , d2/d , d3/d , d4/d )
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Figure 1. Schematic diagram of a rectangular-shaped unconfined aquifer with localized
recharge (a) top view (b) cross section view.
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Figure 2. Temporal distributions of the dimensionless head predicted by Manglik et al. (1997)
solution for a no-flow boundary, Manglik and Rai (1998) solution for a Dirichlet boundary, and
the present solution with κz = 1 for a Robin boundary.

12276

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/12247/2015/hessd-12-12247-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/12247/2015/hessd-12-12247-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 12247–12280, 2015

Technical Note:
three-dimensional

transient
groundwater flow

C.-H. Chang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 3. Temporal distributions of the dimensionless head predicted by Manglik and Rai (1998)
solution based on 2-D flow and the present solution for 3-D flow with various κz.
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Figure 4. Temporal distributions of the dimensionless head for (a) κz = 10−2 and (b) κz = 10
predicted by Zlotnik and Ledder (1993) solution based on the assumption of Ss = 0 and the
present solution relaxing the assumption.
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Figure 5. Temporal distributions of the dimensionless head subject to a transient recharge rate
predicted by Ramana et al. (1995) solution, Zlotnik and Ledder (1993) solution, and the present
solution with κz = 1, κ = 100, and ε = 100.
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Figure 6. Temporal distributions of the normalized sensitivity coefficients of the hydraulic head
at the observation points of (a) (x, y , z) = (555, 500, −10) and (b) (x, y , z) = (800, 500, −10)
to the changes in parameters a, b, Kz, Ss, K1, Sy, and Kx.
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